Population Genetics Inference for Longitudinally-Sampled Mutants Under Strong Selection
نویسندگان
چکیده
Longitudinal allele frequency data are becoming increasingly prevalent. Such samples permit statistical inference of the population genetics parameters that influence the fate of mutant variants. To infer these parameters by maximum likelihood, the mutant frequency is often assumed to evolve according to the Wright-Fisher model. For computational reasons, this discrete model is commonly approximated by a diffusion process that requires the assumption that the forces of natural selection and mutation are weak. This assumption is not always appropriate. For example, mutations that impart drug resistance in pathogens may evolve under strong selective pressure. Here, we present an alternative approximation to the mutant-frequency distribution that does not make any assumptions about the magnitude of selection or mutation and is much more computationally efficient than the standard diffusion approximation. Simulation studies are used to compare the performance of our method to that of the Wright-Fisher and Gaussian diffusion approximations. For large populations, our method is found to provide a much better approximation to the mutant-frequency distribution when selection is strong, while all three methods perform comparably when selection is weak. Importantly, maximum-likelihood estimates of the selection coefficient are severely attenuated when selection is strong under the two diffusion models, but not when our method is used. This is further demonstrated with an application to mutant-frequency data from an experimental study of bacteriophage evolution. We therefore recommend our method for estimating the selection coefficient when the effective population size is too large to utilize the discrete Wright-Fisher model.
منابع مشابه
Pick Your Poisson: An Educational Primer for Luria and Delbrück's Classic Paper.
The origin of beneficial mutations is fundamentally important in understanding the processes by which natural selection works. Using phage-resistant mutants in Escherichia coli as their model for identifying the origin of beneficial mutations, Luria and Delbrück distinguished between two different hypotheses. Under the first hypothesis, which they termed "acquired immunity," the phages induced ...
متن کاملAssessing the Accuracy and Power of Population Genetic Inference from Low-Pass Next-Generation Sequencing Data
Next-generation sequencing (NGS) technologies have made it possible to address population genetic questions in almost any system, but high error rates associated with such data can introduce significant biases into downstream analyses, necessitating careful experimental design and interpretation in studies based on short-read sequencing. Exploration of population genetic analyses based on NGS h...
متن کاملGenetic variability and identification of markers associated with germination parameters in gamma-irradiation induced mutants of sunflower under water stress condition
The objectives of the present research were to evaluate the variability induced by gamma-irradiation among a population of M8 sunflower mutant lines and to identify molecular markers associated with different seed germination traits. Experiments were carried out under well watered and water-stressed conditions using a randomized blocks design, with three replications. The studied traits consist...
متن کاملA high-frequency null mutant of an odorant-binding protein gene, Obp57e, in Drosophila melanogaster.
We have found a null mutant of an odorant-binding protein, Obp57e, in Drosophila melanogaster. This frameshift mutation, which is a 10-bp deletion in the coding region, is at a high frequency in the Kyoto population and is also present in Taiwan and Africa. We have sequenced a 1.5-kb region including the tandemly duplicated gene, Obp57d, from 16 inbred lines sampled in Kyoto, Japan. The analyse...
متن کاملEvolution of the human immunodeficiency virus envelope gene is dominated by purifying selection.
The evolution of the human immunodeficiency virus (HIV-1) during chronic infection involves the rapid, continuous turnover of genetic diversity. However, the role of natural selection, relative to random genetic drift, in governing this process is unclear. We tested a stochastic model of genetic drift using partial envelope sequences sampled longitudinally in 28 infected children. In each case ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 198 شماره
صفحات -
تاریخ انتشار 2014